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Abstract

This paper provides a Safety Checklist for usc during the analysis of software re-
guirements for spacecraft and other safety-critical, embedded systems, The checklist
specifically targets the two most common causes of safety-related software errors. (1)
inadequate interface requirements and (2) discrepancies between the documented re-
guirements and the requirements actually needed for correct functioning of the system.

Use of the checklist to enhance the software-requirements analysis is shown to reduce
the number of safety-related software errors.

I. Introduction

An earlier study of the causes of safety-related software errors found that those errors identi-
fied as potentially hazardous to a system tend to be produced by diflerent error mechanisms
than non-safety-related software errors [15]. Safet y-related software errors found during the
integration and system testing of two spacecraft arose most commonly from: (1) misun-
derstandings of the software’s interfaces with the rest of the system, and (2) discrepancies
bet ween the documen ted requirements specifications and the requirements needed for correct
functioning of the system.

A software error is defined to be a software-related discrepancy between a computed,
observed, or measured value or condition and the true, specified, or theoreticaly correct
value or condition [1], A software error is classified as safety-related if, during the standard
error-correction process, the systems safety analyst determines that the error represents
potentially significant or catastrophic failure effects.

This paper is part of an ongoing effort to improve system safety by directly targeting
the known causes of safety-related software errors during the requirements phase. The main
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result of the paper is to provide a Safety Checklist for the analysis of software requirements
that focuses specifically on interface requirements and robustness requirements,

Since system interface issues such as timing dependencies, storage capacities, noise char-
acteristics, communication links, and expected operating environments are frequent sources
of safety-relatecl software interface errors, they need to be reflected in the software require-
ments specification. Correctly specifying software/ systcm interfaces in complex, embedded
systems with software distributed among various hardware components, some of which may
be as-yet undetermined, is difficult.

Similarly, many of the safety-related software errors involve inadeguate software responses
to extreme conditions or extreme values. Anomalous hardware behavior, unanticipated
states, invalid data, signal saturation, and incorrect triggering of error-recovery responses
are robustness issues which cause errors. By inducting requirements for robustness or what
Neumann calls “defensive design® in the specifications, many safety-related errors can be
avoided [18].

Jafle et al. present a set of criteria, defined interms of an abstract state machine, to
help find errors in the software requirements specifications of process-control systems [1 1 ].
They pay particular attention to the behavioral properties of control systems, making their
work an appropriate candidate for error reduction in safety-critical spacecraft systems.

Spacecraft involve embedded software distributed on severa different flight computers.
The spacecraft’s software is safety-critical in that it monitors and controls components that
can be involved in hazardous system behavior [14]. The possibility y of hazardous interactions
among the processes executing on different processors as well as the complexity of the timing
issues across the systcm interfaces demand a rigorous analysis of the requirements.

This paper adapts ancl extends the criteriain [1 1] to the spacecraft domain. The resulting
Safety Checklist is shown to be useful in reducing safety-rclatecl software errors. It appears to
be applicable to a variety of application domains involving safety-critical, embedded software.

The Safety Checklist developed here, unlike the criteria presented in [11], is appropri-
ate for a software-development process that may not include forma specification languages
or finite-state-machine modeling. The Safety Checklist described below thus is integrated
readily into a wide range of software development environments.

Two specific applications of the Safety Checklist are given in Section 1V. These demon-
strate its success at reducing the number of safety-related errors clue to inadequate software
requirements regarding interfaces and robustness.

The overal goal is to reduce safety-related software errors in future systems. The method
is to focus during requirements analysis on those areas (software/system interfaces, failure
modes, timing, boundary conditions ancl values) which in the past have caused errors that
persisted until integration and system testing. The Safety Checklist has been developed as
a tool to aid in this requirements analysis.

I1. Related Work

Gray and Thayer [9] identify two key components of any software regquirements methodol-
ogy: (1) to aid in determining the software requirements and (2) to represent the software
requirements Specifications. The work described here is focused solely on the first of these




two functions.

The paper describes a checklist by which developers can better identify and understand
the requirements needed for embedded software to interact correctly with the systemin all
circumstances. This technique is consistent with a variety of representations of the software
requirements. Regardless of the specification language or model chosen, all requirement
methodologies suitable for safety-critical embedded software must include some way of con-
fronting the issues identified in the Safety Checklist during the requirements phase. This
work is thus integral to any effort to identify and eliminate software errors in safety-critical
Systems.

The Safety Checklist described here can be integrated into the requirements-anal ygjs
process as currently practiced for many application domains [4]. 1'he checklist format is
one that is widely used and with which developersare comfortable. Formal inspections of
requirement specifications, for example, commonly usc checklists.

The utility of the formal inspection of requirements documents is widely documented. A
study by Kelly et a., of 203 formal inspection s., 93 of them inspections of software require-
ments documents, reports that a significantly higher density of defects were found during
requirements inspections than in later phases. [1 3]. Work by Doolan describes the savings
and quality benefits resulting from the forma inspections of the requirement specifications
of alarge (2 million lines of code) package of seismic-processing software [5].

The Safety Checklist presented below is compatible with the software-requirements check-
list used during formal inspections at Jet Propulsion laboratory [6]. Overlap with the formal-
inspection checklists has been eliminated to increase the usefulness of the Safety Checklist.
The focus of the Safety Checklist is narrower than the formal-inspection checklists, since it
con cent rat es on working backwards from common safet y-rela t ed software errors discovered
during system testing to their prevention in the requirements phase. The Safety Checklist is
intended to extend the requirements analysis in directions that may enhance system safety,
not to replace the current checklists, which are broader and more comprehensive in scope.

A wide variety of powerful formalisms exists to model and represent the specifications
and behavior of systems [21]. In addition, much work has been clone in recent years on formal
specification languages. Timing constraints, which are a major source of software interface
errors, often can be accurately modeled and interactively checked (2,8, 10, 17, 1 9).

The capability to verify that the software requirements for a system satisfy the safety
constraints on that system is a focus of much recent work [7,12,14] Similarly, the capability
to analyze specifications by proving theorems regarding them allows verification of the safety-
critical functions of a system [3, 20].

The Safety Checklist provides a possible bridge mechanism from manual or CASI: anal-
ysis of reguirements to the formal specification and verification of safety -related software
requirements. As formulated here, the checklist can provide a first step towards specifying
safety constraints formally. The checklist’'s formal basis, as defined by Jafle et al., alows
the checklist to be written in terms of mathematical predicates in a variety of formal speci-
fication languages. It can then be tested against a formal specification of the requirements.
The Safety Checklist thus can serve as a link between current informal practices and future,
formal requirements analyses for safety-critical domains.




I1l. The Safety Checklist

The approach in [11] is to build a formal, finite-state model of the requirement specifications
and then to analyzc this model to ensure that its properties match the desired behavior (eg.,
determinism). They accomplish this by stating criteria (usually formal predicates) that must
hold in the model.

The following checklist is a trandation of the criteria into an informal, natural-language
format. Sometimes the trandation is extracted from the text that accompanies the formal
description in [11]. Other times the checklist item is a rewording of a mathematical predicate
in a less-technical vocabulary. Though this rewording inevitably involves some loss of rigor
and information, these are readily rccapturced if the need arises by reference to the original
article.

Formatting the requirements-analysis concerns as a checklist avoids the need previously to
have built a model of the requirements. The checklist thus makes the interface ant] robustness
issues (shown in Sect. IV to be powerful iden tifiers of future safet y-related software errors)
available to a wider range of software-clcvclopment environments. In some applications the
checklist may complement more formal approaches to the requirements analysis.

The work in [11] models only the controller in a process-control system. The adaptation
of the criteria to spacecraft involves the consideration of additional features. Specifically, the
prevalence of concurrent processes (often on distributed controllers), of redundant resources,
of external command signals as inputs to the controller, and of state changes not visible in the
feedback information are all features that complicate the spacecraft’s requirements. These
features appear to be typical of many complex, embedded systems with timing constraints
ancl safety-critical functions. The wording of the items in the Safety Checklist tries to take
the associated interface and robustness issues into account for such systems.

Interfaces

1. Is the software's response to out-of-range values specified for every input?

2. Is the software’s response to not recciving an cxpected input specified? (That is, are
timeouts provided?) Dots the software specify the length of the timeout, when to start
counting the timeout, and the latency of the timeout (the point past which the receipt
of new inputs cannot change the output result, even if they arrive before tile actua
output)?

3. If input arrives when it shouldn’'t, is a response specified?

4. On a given input, will the software always follow the same path through the code (that
is, is the software’s behavior deterministic)?

5. Is each input bounded in time? That is, does the specification include the earliest time
at which the input will be accepted and the latest time at which the data will be
considered valid (to avoid making control decisions based on obsolete data)?




10.

11.

13.

14.

15.

16.

V.

Is a minimum and maximum arrival rate specified for each input (for example, a
capacity limit on interrupts signaling an input)? For each communication path? Are
checks performed in the software to avoid signal saturation?

. If interrupts are masked or disabled, can events be lost?

Can any output be produced faster than it can be used (ab sorbed) by the interfacing
module? Is overload behavior specified?

Is all data output to the buses from the sensors used by the software? If not, it is likely
that some required function has been omitted from the specification.

Can input that is received before startup, while offline, or after shutdown influence
the software's startup behavior? For example, arc the values of any counters, timers,
or signals retained in software or hardware during shutdown? If so, is the earliest or
most- recen t value ret ained ?

Robustness

In cases where performance degradation is the chosen error response, is the degradation
predictable (for example, lower accuracy, longer response time)?

Arc there sufficient delays incorporated into the error-recovery responses, e.g., to avoid
returning to the normal state too quickly?

Are feedback loops (including echoes) specified, where appropriate, to compare the
actual effects of outputs on the system with the predicted effects’?

Are dl modes and modules of the specified software reachable (used in some path
through the code)? If not, the specification may include superfluous items.

If a hazards analysis has been clone, clocs every path from a hazardous state (a failure-
modc) lead to a low-risk state?

Arc the inputs identified which, if not reccived (for example, due to sensor failure), can
lead to a hazardous state or can prevent recovery (single-point failures)?

Results

Two applications of the Safety Checklist are dcscribed below. The first application looks at
the safet y-related software errors that were actual] y found on two spacecraft and evaluates
whether use of the checklist during requirements analysis could have forestalled those errors.
The second application uses the Safety Checklist to analyze part of a requirements documcn t
for safety-critical software.




A. Targeting Safety-Related Errors

The efficacy of the Safety Checklist first is analyzed by examining 192 safety -related software
errors documented during integration and system testing of two spacecraft, Voyager and
Galileo. Each of the 192 errors is classified according to which item, if any, in the Safety
Checklist addresses the issue causing the error. Table 1 reports the results (scc Appendix
for tables).

Of the 192 errors, 149 of thcm have their causcs addressed by the checklist. This sug-
gests that the checklist does, in fact, “ask the right questions.” The usefulness of the Safety
Checklist lies in its use as a prompter for better recognition of requirements. Asking the
right questions during the requirements-anal ysis phase clearly is not suflicient to preclude
the introduction of safety-related software errors into the system. However, since misunder-
standing of the interface requirements and lack of detailed requirements for robustness are
the primary causes of errors, asking the right questions seems to be a necessary condition
for avoiding safety-related software errors in complex systems.

Table 1 shows that the issue most frequentlyinvolved in safety-related software errors
is item 15, “noes every path from a hazardous state (a failure modec) lead to a low-risk
state?’ The prevalence of this issue reflects the fact that many of the safety-relatccl software
errors (20% on Galileo) involved the onboard autonomous error-recovery software, Some of
the required error-recovery responses incorrectly included or omitted actions that allowed
hazardous states to be entered or rc-entered. Examples of such actions are turning off gyros,
switching to backup memory, or disabling certain software processes in a particular modec.
The additional analysis neceded during the requirements phase to answer “No” to item15 of
the checklist might have precluded some of these errors.

The second most common issue producing safety-relatecl software errors is item 12, “Are
there sufficient delays incorporated into the the error-rccovcry responses, e.g., to avoid re-
turning to the normal state too quickly?” Failure to recognize timing constraints such as the
time required to complete recovery activity (e.g., to point the sensor at the sun), the delay
required to avoid transient values (e.g., power transients or warm-up delays), or the correct
persistence limit at which to trigger a response are common requircments inadequacies that
cause subsequent interface errors [16].

Both the third and fourth most common errors queried by the checklist involve the arrival
of input. The third most common error-producing issue is itcm 3, “If input arrives when it
shouldn ‘t, is a response specified?” This issue causes safety- related software errors when
essential input is ignored. Often this involves subtle timing issues across the software/system
interfaces (e.g., commands arriving before a process is in the correct mode to receive them,
unexpected duplicate commands that are mishandled, or unforeseen race conditions),

The fourth most common issue is item 1, ‘{Is the software’s response to out-of-range
values specified for every input?” This becomes a safety issue when error responses are
erroneously triggered by incorrectly defined ranges or thresholds. Additionally, the lack of
software requirements to handle large errors (e.g., large pitch disturbances, unexpected spin
rates) caused several software errors on each spacecraft.

A related robustness issue is the fifth most common error, item §, “Can any output
be produced faster than it can be used by the interfacing module?” This item, together
with item 6 (arrival rates), checks for erroneous assumptions regarding the possibility of,




and appropriate response to,data overflow, signal saturation, and duplicate commands. By
including requirements for overflow protection and out-of-range checks in the specifications,
the subsequent design is more likely to be robust with regard to boundary conditions and
values.

in all, eleven of the sixteen items on the Safety Checklist produced safety-rclatccl software
errors, Those items not cited arc either adequately handled during tile development process
with other rncthods (e.g., “Is al dataused?” is checked by various means) or have not been
documented as a problem with these particular systems (e.g., “Is the software’s behavior
deterministic?”).

The Safety Checklist appears to be useful for targeting the causes of safety-related soft-
warc errors. Of the safety-related software errors on the two spacecraft, 77% have their causes
addressed by the Safety Checklist. The goal isto decrcase the number of safety -related soft-
warc errors found during testing of future systems by enhancingthe requirements-analysis

process through use of the checklist.

B. Analyzing Software Requirements

The Safety Checklist also was used to analyze part of a draft verson of a Software Re-
quirements Document for a spacecraft currently being devcloped. The portion chosen for
analysis was the requirements specifications for data collection by the remote (distributed)
engincering subsystems (e.g., power, propulsion, science and radio instruments).

This portion of the software specifications was chosen because each remote subsystem has
many interfaces (both periodic ant] aperiodic) with other subsystems and because the safet -
critical, error-recovery processes depend on the results of the data collection. The purpose
of applying the Safety Checklist to these specifications was to evaluate the usefulness and
ease-of-use of the checklist, not the correctness or completeness of what was provided as only
aprelimi nary requiremen ts documen t.

The data collection functions as follows. Each remote engineering subsystem receives
various inputs over a shared bus from the central control computer as well as from other
subsystems, performs certain actions in response to these inputs, ancl places various outputs
(primarily engineering data) on a bus. Engineering data is gathered by each remote engi-
neering subsystem and stored in its Bus Interface Unit’s memory until the data is packaged
and output on the bus to the central control processor. Some of the data also is extracted
and sent to other subsystems. In addition, data required by the error-recovery processes are
extracted and output separately.

I’able 2 (see Appendix)shows the results of applying the Safety Checklist to the software
requirements specifications for the remote engineering data collection. Seven of the sixteen
items in the checklist are addressed in the preliminary software requirements document.
Three of the sixteen items arc explicitly deferred (since error-recovery responses and interrupt
behavior are still being defined). The remaining six of the sixteen items prompt additional
guestions involving the analysis of the requirements.

The six items prompting additional requirements analysis do not necessarily need further
specification in the document. Instead, they raise questions about possibly vulnerable areas
((what if’s”) and possibly hazardous circumstances. The questions raised by the checklist
are useful in focusing the requirements-anal ysjs process on the interface and robustness issues
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that have been shown to cause safety -related software errors in other complex, embedded
systems.

For example, in accordance with the checklist, there is a requirement specified for data
freshness. However, the timestamp in the header of the rclevant data item records only the
current time, making it uncertain whether obsolete data could beidentified. The concern
is not at this point with how the obsolete data could beidentified, but with whether a
requirement to identify obsolete data is in conflict with other requirements regarding header
information, The checklist also allowed identification of possible race conditions, of possible
starvation of low-priority data transfers, and of inputs which if not reccived might result in
hazardous states (e.g., notification that error-recovery is underway).

Two extensions to the checklist were suggested by the application of the Safety Checklist
to the software requirements specification.

1. Data consistency When multiple copies of the same data items are kept, the possibil-
ity exists that the copies may have different values at any point in time, This inconsistency
can occur through asynchronous update or through data corruption (e.g., as data is trans-
ferred across the bus or during a power-on reset response). This issue has significant safety
consequences since error recovery often involves the management of redundant resources.
This leads to the following extension to the Safety Checklist:

“Am checks for consistent data performed before conirol decisions are made based on that
data?”

2. Generic structures. An important aspect of defensive design is that, as much as pos-
sible, modules and data objects should be generic, similar in format and in usc. Special
cases and exceptions increase the number of states and the opportunities for design errors,
especially during changes. In particular, restricting the number of possible hazardous states
makes the validation of safety constraints more feasible. This leads to the following addi-
tional item for the checklist:

“Are generic structures used whenever appropriate to restrict. the number of possible haz-
ardous modes and states?”

V. Conclusion

The Safety Checklist has been shown to be useful in analyzing software requirements, particu-
larly with regard to interfaces and robustness. By targeting those features which have proven
to be the most common causes of safety-related software errors, the checklist contributes to
asafer system. It aids in analyzing failure modes, in uncovering hidden assumptions and
misunderstandings, and in identifying potential areas of vulnerability,

The Safety Checklist focuses extra attention on historically troublesome aspects of safety-
critical, embedded software (timing dependencies, triggers for error-recovery responses, the
handling of overload and saturation, the use of obsolete data for control decisions) without
causing overspecification of well-understood or low-risk requirements. ‘I’he checklist thus
allows the depth of the requirements analysis to be tailored to the level of risk (technical or
historical) associated with a component,

Because the checklist emphasizes requirements for software/systern interfaces and robust




responses to anomalous circumstances, many of the items it identifies are system hazards.
It thus can be used as a first step towards specifying and checking safety constraints, either
informally or formally. As developed here, the checklist can be readily incorporated into
the regquirements analysis, e.g., as a supplement to the formal inspection of requirements
specifications.

Future work in this area will be directed at identifying how the use of the Safety Checklist
during the requirements phase can be used to predict which factors in a particular system
arc likely to cause subsequent safety-relatcc] software errors.
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Appendix

‘I'able 1. Targeting Safety-liclatccl Software rrors With the Safety Checklist
Checklist Item Voyager Galileo Total
1. Out-of-range values 5 11 16
2. Timeout 2 5 7
3. Input arrives when it shouldn’t 10 7 17
4. Deterministic 0 0 0
5. Data age 1 7 8
6. Arrival rate 5 3 8
7. Lost events 5 5 10
S. Overload response 9 4 13
9. All data used 0 0 0
10. Startup/Offline/Shutdown 6 0 6
11. Degradation predictable ! 0 !
12. Delays in error responses G 17 23
13. Feedback loops 0 0 0
14. All modes reachable 0 0 0
]5. Paths lead to low-risk state 5 29 34
16. Inputs Received before start 0 6 6
Total Addressed by Safety Checklist: 55 _ 94 149

Table 2. Applying the Safety Checklist to a Requirements Specification “

Checklist Item “  “° ‘Resolved Questions RRemain Future Specification
1.. Out-of-range values X

2. Timeout X

3. Input arrives when it shouldn’t X

4. Deterministic X

5. Data age X

6. Arrival rate X

7. Lost events X

8. Overload response X

9. All data used X

10. Startup /Offline/Shutdown X

11. Degradation predictable X

12. Delays in error responses X

13. Feedback loops X

14. All modes reachable X

15. Paths lead to low-risk state X

16. Inputs Received before start X —
Totals: 7 6 3
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